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Abstract. We describe Stong minimality and absolute minimality of finite

models of topological spaces, exhibit Stong minimal models of all closed sur-
faces, and derive several elementary lower bounds for the size of absolutely

minimal models. We define the notion of a finite manifold and characterize

finite surfaces, then use this characterization to show that a finite model of a
closed surface is a finite surface if and only if it is induced by a regular CW

structure on the surface. Finally, we use this result to deduce a better lower

bound for the size of models which are finite surfaces and construct minimal
finite surface models of orientable surfaces whose genera satisfy nice number-

theoretic properties.
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1. Introduction

The study of finite spaces is based on a beautiful isomorphism between the cat-
egory of finite posets and the category of finite T0 spaces which allows the study
of certain combinatorial properties with topological techniques and vice versa. We
assume that the reader is familiar with the basic theory of these spaces, and use
“poset” and “finite T0 space” interchangably. An introduction to the subject writ-
ten by J.P. May can be found in the first three chapters of [6].

When studying these strange new spaces, it is natural to attempt to relate them
to more familiar spaces such as CW complexes. In particular, if we could relate
the homotopical information of posets and ordinary spaces, we could both gain a
better understanding of how finite T0 spaces look and study homotopical proper-
ties of ordinary spaces using combinatorial techniques. While outright homotopy
equivalence between ordinary spaces and finite spaces is easily seen to be impossible
([1], Theorem 1.3), this interest is justified by a pair of results of McCord ([7]).
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Definition 1.1. Given a finite poset X, its order complex is the simplicial complex
K(X) whose n-simplices are (n+ 1)-chains {x0 < x1 < · · · < xn} of X.

Definition 1.2. Given a regular CW complex K, its face poset X (K) is the poset
of cells in K in which A ≤ B if A ⊂ B.

Remark 1.3. If we consider X to be a category, the simplicial set associated to
K(X) is just its nerve, and the geometric realization |K(X)| is its classifying space.
In fact, both of these constructions are functorial on the appropriate categories.

Now we can state the results.

Theorem 1.4. If X is a finite poset, there is a weak homotopy equivalence from
|K(X)| to X.

Theorem 1.5. If K is a simplicial complex, X (K) is weak homotopy equivalent to
|K|.

These results give the desired correspondence for simplicial complexes; in fact,
the second theorem can be generalized to regular CW complexes (with |K| in-
terpreted as K) as proven in [2]. This correspondence motivates the following
definition.

Definition 1.6. If X is a topological space, a finite model of X is a finite T0 space
which is weak homotopy equivalent to X.

Since every space is weak homotopy equivalent to a regular CW complex1, this
implies that every space has a T0 Alexandroff model, and if the regular CW com-
plex is finite, so is the model. One basic example which illustrates the relationship
between ordinary spaces and finite models is that of the non-Hausdorff suspension,
introduced by McCord in [7]. Given a poset X, this is defined to be the poset
obtained by adjoining two new points greater than each point in X. As suggested
by the name, this is a finite version of the ordinary suspension functor for topo-
logical spaces, and in fact the normal suspension of a poset and the non-Hausdorff
suspension are naturally weak homotopy equivalent. As S0 is a finite T0 space, this
construction can be used to construct a finite model of Sn with 2n + 2 points for
each n (Figure 1).
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Figure 1: Hasse diagrams for finite models of S0, S1, and S2.

Notice that a given space will have many finite models. For example, every finite
simplicial structure gives rise to a finite model, and we can always enlarge a model

1Every space is weak homotopy equivalent to a CW complex, while every CW complex is
homotopy equivalent to a simplicial complex of the same dimension; see, for example, Theorem

2C.5 in [5].
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by adding beat points. To avoid superfluous information, reduce complexity, and
gain a better understanding of these models, it is desirable to find finite models
which are minimal in one of two senses.

Definition 1.7. We say a finite T0 space is Stong minimal if its cardinality is
minimal in its homotopy class. We say a finite T0 space is absolutely minimal if its
cardinality is minimal in its weak homotopy class.2

Note that the second notion of minimality is stronger than the first; the sphere
is a rare case where the evident Stong minimal model is absolutely minimal. It is
also perhaps a more natural notion of minimality when it comes to the study of
finite models, since it is equivalent to being the smallest finite model of a space.
However, Stong minimality is easier to check, and Stong minimal models are easier
to find: two finite T0 spaces are homotopy equivalent if and only if their cores are
homeomorphic, so a space is Stong minimal if and only if it has no beat points, and
a Stong minimal model can be obtained from any finite model simply by removing
beat points. In contrast, at the time of the writing of this paper, there is no known
algorithm for reducing an arbitrary finite T0 space to an absolutely minimal space,
or even for determining whether a space is absolutely minimal.

For this reason, results regarding absolutely minimal models have typically in-
volved exhibiting a particular model for a space and showing that no smaller space
can have the same homotopy or homology groups. Barmak and Minian take this
approach in [1] in which they show that the finite models described above are the
unique absolutely minimal models of Sn for each n. Having found such models for
the most basic topological spaces, we turn next to another well-known countable
collection of spaces with simple homology: closed surfaces. Cianci and Ottina exibit
absolutely minimal models of the torus, the projective plane, and the Klein bottle
in [4], but their methods for bounding model size below are not related to the genus
of these surfaces, and hence do not generalize directly to surfaces of higher genus.
In this paper, we begin by describing Stong minimal models for all closed surfaces3.
We then find some lower bounds for the size of arbitrary finite models of closed
surfaces using results from [4] together with some elementary combinatorial facts.
Having derived some minor results for the general case, we specialize to a particu-
larly well-behaved class of finite T0 spaces called finite manifolds, characterize them
in dimension 2, and conclude by deriving a much stronger bound for finite models
of this type, which we use to find some finite models which are minimal among
finite surfaces.

2. Stong minimal models of closed surfaces

In this section, we construct regular CW models for all closed surfaces and show
that the associated posets have no beat points, making them Stong minimal. These
models are generalizations of absolutely minimal models presented in [4].

Given an orientable surface S of genus g, the usual CW structure for S is a regular
4g-gon with edge identifications represented by the word a1b1a

−1
1 b−1

1 ...agbga
−1
g b−1

g .

2These definitions are standard, but the terminology is not: the first is typically called a
“minimal finite space” or simply “minimal”, and the second a “minimal finite model”. This
nomenclature allows for such peculiar entities as spaces which are both minimal and finite models,

but are not minimal finite models. We use different terminology to avoid confusion.
3We assume throughout that our surfaces are connected, as all our results can be immediately

generalized to disconnected closed surfaces by taking coproducts.
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However, this structure is not regular. To fix this issue, we add in the perpendicular
bisectors of each edge with no new identifications, splitting each external edge into
two 1-cells attached by a 0-cell. We also gain one new vertex in the center at the
intersection of all the bisectors. This gives a regular CW structure for S and thus
a finite model (see Figure 2). It is easy to check that this model has 14g+ 2 points.
Note that every 0-cell is contained in at least two 1-cells, every 1-cell contains
exactly two 0-cells and is contained in at least two 2-cells, and every 2-cell contains
exactly two 1-cells. Consequently, no vertex in the Hasse diagram of the model has
in-degree or out-degree 1, so there are no beat points. Thus, this model is Stong
minimal.

Figure 2: The regular CW structure and associated finite model for the
orientable surface of genus 1. Taken from [4].

The construction of the models for nonorientable surfaces is similar. Given a nonori-
entable surface S of genus g, we begin with the usual CW model: the regular 2g-gon
with edge identifications given by the word a21...a

2
g. To make this regular, we add

in both the perpendicular bisectors of the edges and the line segments between
opposing vertices. This yields a regular CW structure with 11g+ 2 points, and the
face poset is Stong minimal for the same reason as in the orientable case.

3. Elementary bounds

In this section, we use the weak homotopy invariance of Euler characteristic and
several results from [4] to derive lower bounds for the size of arbitrary finite models
of closed surfaces other than S2 and RP 2, whose absolutely minimal finite models
are already known. We denote the Euler characteristic of a space X by χ(X) and
the cardinality of X by #X.

In [4], Cianci and Ottina define what they call a splitting property (S2) for finite
posets. The details are not relevant, but the following result they derive is.

Proposition 3.1. Let X be a finite T0 space which is Eilenberg-MacLane of type
(G, 1). If X satisfies (S2) then H1(X) is free abelian and Hn(X) = 0 for n > 1.

We obtain the following corollary.

Corollary 3.2. No closed surface other than S2 or RP 2 can have a model satisfying
(S2).

Proof. Let S be a closed surface that is not S2 or RP 2. Then S is covered by R2,
so it is Eilenberg-MacLane of type (π1(S), 1). If S is nonorientable, then H1(S) is
not free abelian, and if S is orientable, H2(S) is nontrivial. Since homology is a
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weak homotopy invariant, the same is true of any finite model of S, so the result
follows by the previous proposition. �

There are two relevant consequences derived in [4] of not satisfying (S2).

Proposition 3.3. If X is a finite T0 space not satisfying (S2) that is connected
and Stong minimal, then #X ≥ 16.

Proposition 3.4. If X is a finite T0 space with at most two maximal points or at
most two minimal points, X satisfies (S2).

These give us our lower bounds.

Theorem 3.5. Let X be a finite model of a surface S other than S2 or RP 2. Then
#X ≥ max(16, log2(|χ(S)|)).

Proof. Since we can reduce any model to a Stong minimal model by removing
beat points, we may assume without loss of generality that X is already Stong
minimal. Furthermore, because path-connectedness is detected by homology, X
must be path-connected and thus connected. It follows that #X ≥ 16.

To obtain the other bound, note that since Euler characteristic is weak homotopy
invariant, χ(S) = χ(K(X)), which is the alternating sum of the number of chains in
X of various lengths,

∑
k a chain(−1)#k+1. By the triangle inequality, the absolute

value of the Euler characteristic must be less than or equal to the total number of
chains in X,

∑
k a chain 1. Since chains are subsets of X, this is less than or equal

to the number of subsets of X, 2#X . The result follows. �

We can improve our logarithmic bound to a square root bound in the case where
X has height 3.

Proposition 3.6. Let X be a height-3 finite model of a surface other than S2 or
RP 2. Then #X ≥

√
2|χ(S)− 7|.

Proof. Let n = #X. The only negative contribution to χ(K(X)) is from the edges,
of which there are at most

(
n
2

)
since they are 2-chains in X. We know that there are

at least 6 vertices since X does not satisfy (S2): there are at least three maximal
points and three minimal points by Proposition 3.4, and no point can be both
maximal and minimal since X is connected. We also know there must be at least
one face because X is of height 3. Thus, there must be at least |χ(S)− 7| edges, so
n2 ≥ n2 − n = 2

(
n
2

)
≥ 2|χ(S)− 7|, from which the result follows. �

It is conceivable that this method could be extended to posets of greater height.
(It is trivial from the simplicial homology of K(X) that any finite model must have
height at least 3.)

4. Characterization of finite manifolds

We now describe a particularly well-behaved class of finite spaces and character-
ize them in dimension 2.

Definition 4.1. A finite T0 space X is a finite n-manifold if |K(X)| is a topological
n-manifold.

Remark 4.2. We can extend much of the usual language for topological manifolds
to finite manifolds. For example, we call a finite 2-manifold a finite surface, and we
can define an analogous notion of a finite manifold with boundary.
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Remark 4.3. It is immediate from invariance of dimension that a finite n-manifold
must be of height n+ 1.

The first of the following definitions is standard, while the second extends the
idea of the first to finite T0 spaces.

Definition 4.4. An n-dimensional simplicial complex K is called pure if every
simplex in K is contained in an n-simplex.

Definition 4.5. A finite T0 space X of height n is called pure if every maximal
chain in X is of height n.

As suggested by the terminology, these notions are equivalent.

Proposition 4.6. A finite T0 space X is pure if and only if K(X) is pure, and a
finite simplicial complex K is pure if and only if X (K) is pure.

Proof. Suppose X is a finite T0 space of height n, so K(X) is a simplicial complex of
dimension n−1. A k-simplex in K(X) is a chain of length k+1, so every simplex in
K(X) is contained in an (n−1)-simplex if and only if every chain in X is contained
in a chain of length n.

Now suppose K is a finite simplicial complex of dimension n, so X (K) is a poset
of height n + 1. The height of a maximal chain in X (K) is one greater than the
dimension of the largest simplex it contains, so every maximal chain is of height
n+ 1 if and only if every simplex in K is contained in an n-simplex. �

The reason for introducing pureness is that it plays an important role in the
characterization of finite surfaces.

Theorem 4.7. A finite T0 space X is a finite surface if and only if it satisfies the
following conditions:

(i) X is pure of height 3;
(ii) For each height-2 point x, there are exactly two points greater than x and

two points less than x; and
(iii) For each maximal point xm and each minimal point xn, the set (xm, xn) =

{x ∈ X | xn < x < xm} contains either zero or two points.
(iv) For each extremal point x, the set of points other than x which are compa-

rable to x is connected.

The bulk of the proof of this theorem is based on the corresponding result for
simplicial complexes. Stating it requires the following standard definition.

Definition 4.8. If v is a vertex in a simplicial complex K, the link of v, Lk(v,K),
is the undirected graph whose vertices are the 1-simplices of X with v as a face,
and where there is an edge between two vertices if they are faces of a common
2-simplex.

Lemma 4.9. The geometric realization of a finite simplicial complex K is a surface
if and only if K satisfies the following conditions:

(i) K is pure and 2-dimensional;
(ii) Each 1-simplex of K is a face of exactly two 2-simplices; and

(iii) For each vertex v of K, |Lk(v,K)| is homeomorphic to S1.
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Proof. If (i) fails, |K| is not a surface by invariance of dimension. If (ii) fails,
removing a line from any sufficiently small connected neighborhood of a point in the
edge yields three components, so it is not locally Euclidean. If (iii) fails, removing
v from a sufficiently small connected neighborhood yields two components, so it is
not locally Euclidean.

Suppose now that all three conditions hold. Then (i) guarantees that we only
need to check the interior of 0-, 1-, and 2-simplices. The last is trivial. Since gluing
together two polygons at an edge yields a Euclidean neighborhood for points on the
edge, 1-simplices follow by (ii). Finally, 0-simplices follow by (iii), since it implies
that at a 0-simplex v, the realization is locally homeomorphic to the disk obtained
by gluing together triangles along their edges circularly. �

Now we can prove the theorem.

Proof. The first condition for the poset is equivalent to the first condition for the
simplicial complex. Given pureness, the second and third poset conditions together
are equivalent to the second simplicial complex condition, because (together with
the pureness) they are equivalent to the statement that for any two comparable
points p and q, there are exactly two ways of extending the 2-chain {p, q} to a 3-
chain. Finally, the second, third and fourth poset conditions together are equivalent
to the third simplicial complex condition, since a graph is a circle if and only if it
is connected and each vertex has degree 2. �

There is an alternate characterization of finite surfaces which is also useful. While
it is ultimately just a more compact rephrasing of Theorem 4.7, we will see that
it is convenient for a number of purposes. The proof is given by point-counting
together with the above criterion for a graph to be a circle, and comparing to the
conditions of our original classification.

Definition 4.10. Let X be a finite poset and x ∈ X. Then the link of x, Lk(x),
is the set of points other than x which are comparable to x.

Corollary 4.11. A finite T0 space X is a finite surface if and only if for each
x ∈ X, |Lk(x)| is homeomorphic to S1.

One of the reasons this statement of the theorem is advantageous is that it
can more easily describe the higher-dimensional version of the theorem. Although
we have written it out specifically for finite surfaces, the proof of this theorem
generalizes directly to higher dimensions4 , so we obtain the following.

Corollary 4.12. A finite T0 space X is a finite n-manifold if and only if for each
x ∈ X, |K(Lk(x)|) is homeomorphic to Sn−1.

Another benefit of this form of the theorem is its relationship to the following
result of A. Björner in [3].

Theorem 4.13. Let P be a finite poset, and for each x ∈ P , denote the set of
points less than x by Ûx. Then P is the face poset of a regular CW complex if and
only if for each x ∈ P , |K(Ûx)| is homeomorphic to a sphere.5

4In two dimensions, the conditions guarantee precisely that we have triangles glued in a circular
fashion, which yields a Euclidean neighborhood of every point. The higher-dimensional equivalent
is for n-simplices to be glued so as to form a ball in the neighborhood of a vertex, which is expressed

via the condition that the indicated poset has order complex homeomorphic to Sn−1.
5We take the empty space to be the sphere of dimension −1.
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This gives us a final characterization of finite surfaces which will be crucial in
obtaining our bound in the next section.

Theorem 4.14. A finite T0 space X is a finite surface if and only if it is the face
poset of a regular CW structure on some closed surface.

Proof. Firstly, suppose X = X (Y ), where Y is a regular CW structure on some
closed surface. Then |K(X)| is nothing more than the cellular subdivision of Y , so
the two are homeomorphic.

Suppose conversely that X is a finite surface, and let x be some point in X. If
x is minimal, then by definition |K(Ûx)| ∼= S−1. If x is on the second level, there

are exactly two points below it by Theorem 4.7, so |K(Ûx)| ∼= S0. Finally, if x is

maximal, then |K(Ûx)| ∼= S1 by Theorem 4.13. �

Before moving on, it is worth taking a moment to consider the common element
between Corollary 4.11 (more generally Corollary 4.12) and Theorem 4.13 which
allowed us to prove this relationship: subposets whose order complexes are simpli-
cial spheres. It is generally a nontrivial problem to determine whether a finite poset
has this property, although the case in dimension 1 is simple: a height-2 poset has
geometric realization S1 if and only if it is connected and every vertex has degree
2. Given this fact, the following theorem suggests the idea of taking an inductive
approach to the problem.

Theorem 4.15. If X is a finite n-manifold, then |K(X)| is homeomorphic to Sn

if and only if X is a finite model of Sn.

Proof. One direction is obvious: if |K(X)| is homeomorphic to Sn, then X is a
finite model of Sn by Theorem 1.4.

To prove the other direction, suppose X is a finite n-manifold which is a finite
model of Sn. Then |K(X)| is a CW space which is weak homotopy equivalent to
Sn, and hence homotopy equivalent to it by the Whitehead theorem. Since |K(X)|
is a closed n-manifold, the result follows by the Poincaré conjecture. �

5. Bounds for finite surfaces

Throughout this section, we will denote the number of height 1, 2, and 3 points
by `, m, and n respectively.

The problem of finding absolutely minimal finite models amounts to minimizing
the sum of the number of points at each level. As the following result shows, by
restricting to finite surfaces, we need consider only one number rather than three
or more.

Proposition 5.1. Let X be a finite surface which is a model of a closed surface S
of genus g. If S is orientable, then #X = 2m+ 2− 2g. If S is nonorientable, then
#X = 2m+ 2− g.

Proof. Because X is a finite surface, #X = ` + m + n. But we also know by
Theorem 4.14 that X is the face poset of a regular CW complex structure on S, so
n−m+ ` = χ(S). Thus, #X = `+m+ n = 2m+ χ(S). The result follows by the
standard formula for the Euler characteristic of a closed surface. �

Using the fact that any finite model of a closed surface other than RP 2 or S2

must satisfy the (S2) splitting property and thus have at least three maximal and
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three minimal points, we can immediately derive from this the linear lower bounds
2g+10 and g+10 for the size of finite surface models of orientable and nonorientable
closed surfaces respectively. However, we can do slightly better than this.

Theorem 5.2. Let X be a finite surface modelling the closed surface S of genus
g. If S is orientable, then #X ≥ 2d4√ge + 2g + 6. If S is nonorientable, then
#X ≥ 2d2

√
2ge+ g + 6.

Proof. Let ci denote the degree of the ith maximal point in the Hasse diagram of
X. Then since each point in the middle level has up-degree 2,

∑
i ci = 2m, and so

for at least one i, ci ≥ 2m/n. Call this point xi. Because Ûxi
is a finite model of

S1, the number of minimal points less than xi must be equal to the number of level
2 points less than xi, which is just ci. Thus, we get ci ≤ l, so d2m/ne ≤ l. The
same argument for bottom points shows that d2m/`e ≤ n.

Adding these inequalities (and ignoring the ceilings), we get 2m(1/n + 1/`) ≤
n + ` = m + χ(S), since n − m + ` = χ(S). The smallest possible value of the
left side of the inequality is achieved when n = ` = (m + χ(S))/2, and we get
8m ≤ (m + χ(S))2. Solving, we get m ≥ 4

√
g + 2g + 2 in the orientable case and

m ≥ 2
√

2g + g + 2 in the nonorientable case. The result follows from Proposition
5.1. �

It is not clear that these inequalities are sharp, especially because we dropped
the ceilings to derive them. However, there are some cases in which we can be
certain they are achieved. To show this, we perform the following construction,
illustrated in Figure 3.

Proposition 5.3. Let n and ` be positive even integers and set 2m = n`. Then
there is a finite orientable surface with n, m, and ` points in its third, second, and
first levels respectively.

Proof. To construct this surface, take n `-gons and identify them in the following
way. Glue every other edge of the first `-gon to every other edge of the second with
coherent orientation, then glue the remaining edges of the second `-gon to every
other edge of the third (again with coherent orientation), and continue until the
final `-gon is glued back to the first. Because we have an even number of polygons,
the final gluing will also have coherent orientation. Explicitly, we may embed the
polygons in R3 centered at equal intervals along a circle and with parallel top edges,
and glue them together via homotopies of R3. Then each step of gluing switches
the sides which are glued between containing and not containing the top edge, so
having an even number of polygons guarantees that the first and last polygons will
glue properly, so the space we have constructed admits an embedding in R3. This
construction also guarantees that the link of every vertex will be a circle (since it
is connected and every vertex in the graph has degree two) and every edge will be
adjacent to exactly two faces, so this will produce a closed orientable surface with
a regular CW structure consisting of n faces, m edges, and ` vertices. We finish
the construction by taking its face poset. �
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Figure 3: The polygons and identifications obtained by performing the
construction with ` = 6 and n = 4. All edges are oriented clockwise. Performing

the gluing will yield the orientable surface of genus 2.

If we take n = 4, ` = 6, this produces a model of the orientable surface of genus
2 with n = 12 (Figures 3,4). Geometrically, this is obtained by gluing together
four hexagons in pairs to obtain two pairs of pants, then gluing together the pairs
of pants to obtain the surface. By our bound above, this is minimal among finite
orientable surfaces of genus 2.

It is unfeasible to explicitly construct every model individually to check if it
achieves our bound. However, as the following theorem shows, for g with particu-
larly nice number-theoretic properties, we don’t need to.

Figure 4: A minimal finite orientable surface of genus 2.

Theorem 5.4. If g is a perfect square, then performing this construction with
n = ` = 2

√
g + 2 yields a minimal finite orientable surface of genus g.

Proof. The resulting space has m = 2g + 2 + 4
√
g, so its Euler characteristic is

n − m + ` = 2 − 2g, which shows that it is indeed of genus g. Its cardinality is
` + m + n = 8

√
g + 2g + 6, and since

√
g is an integer, this is precisely the lower

bound derived above. �

The simplest case is when g is a perfect square. However, the lower bound is more
generally achieved by this construction when g is a product of two integers which
are sufficiently close. For example, if g is of the form (k− 1)(k− 2), then as long as
k is at least 3, we get 4k− 7 < 4

√
g ≤ 4k− 6, so d4√ge = 4k− 6 = k− 1 + 2 + 4

√
g,

and setting n = 2k, ` = 2(k−1) yields a surface of the desired genus which achieves
the bound. To further generalize this result is a problem of number theory.
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